При разработке новых схем или ремонте электроники может возникнуть необходимость проверки конденсатора на работоспособность.

Для этого предусмотрено много вариантов, но наиболее простой требует наличие мультиметра и нескольких минут свободного времени.

Ниже рассмотрим, какие бывают емкости и разберем принципы их работы, поговорим об основных поломках, расшифровке обозначений на корпусе и особенностях проверки конденсатора в том числе и на плате без выпаивая.

Применение приведенной пошаговой инструкции позволит сделать работу самостоятельно и с помощью подручных инструментов.

СОДЕРЖАНИЕ:

Принцип работы конденсатора

Работа конденсатора построена на способности устройства накапливать заряд и в дальнейшем передавать его для питания других электрических устройств.

Конструктивно деталь состоит из двух металлических электродов с расположенным между ними тонким диэлектриком.

Последний способен накапливать «плюсовой» и «минусовой» заряд и удерживать его в течение длительного времени.

При этом емкость устройства зависит от расстояния между обкладками, их площади и диэлектрической проницаемости.

Виды по способу применения

Конденсаторы нашли применение в 99,9% современных электронных устройствах. Последние делятся на общего бытового использования и специальные.

Именно специальные конденсаторы по функциональному применению делятся на:

  1. Пусковые. Обеспечивают надежный старт мощных электродвигателей и дальнейшую их бесперебойную работу. Насосы, компрессоры, станки и другие мощные потребители электроэнергии не могут обойтись без пусковых конденсаторов.
  2. Высоковольтные. Как правило, это вакуумные масляные, керамические и пленочные конденсаторы, применяемые в устройствах источником питания которых являются высоковольтные сети от 380В и выше. По этой причине доступ к ним ограничен и их проверкой и обслуживание занимаются специалисты с соответствующим допуском.
  3. Дозиметрические. Как правило, фторопластовые, имеют высокое сопротивление изоляции и не большой саморазряд. Используются в устройствах с небольшими токовыми нагрузками.
  4. Импульсные. Обеспечивают большие скачки напряжения. Применяются в цепях для тестирования различных электроприборов: электродвигателей, генераторов, источников питания, медицинского оборудования, предохранителей и даже импульсных лазеров.
  5. Помехоподавляющие. Само название говорит за себя. Обладают низкой индуктивностью и обеспечивают снижение общего электромагнитного фона. К примеру, в автомобилях они обеспечивают стабильный пуск мотора нивелируя кратковременный импульс в бортовой сети накапливая лишний заряд энергии и сглаживая напряжение. Как правило, подключаются в схему параллельно катушке зажигания.
Пусковой 18 мкф, 450 В

Типы

Среди большого количества конденсаторов выделяется два типа устройств по полярности, в которых в качестве диэлектрика применяется воздух, стекло или бумага. Рассмотрим каждый из вариантов подробнее.

Полярные

К этой категории относятся все устройства электролитического типа с электролитом в виде жидкости или в твердой форме. Емкость конденсатора может быть в диапазоне 0,1-100000 мкФ.

Конденсатор полярный EEUFS2A470 47мкФ 100В

При их подключении важно четко соблюдать полярность — подпаивать «минус» и «плюс» четко на свои клеммы.

В случае ошибки элемент будет неработоспособным, и возникает вероятность взрыва.

В качестве диэлектрика может выступать только бумага, которая пропитана в электролите.

Неполярные

В эту группу входят конденсаторы, где в роли диэлектрика выступает керамика, слюда, бумага, воздух или стекло.

Они имеют небольшую емкость в пределах от 1 до 220 мкФ. Спрятаны в цилиндрическом корпусе и имеют вывода для подключения к схеме. Пользуются спросом в цепях переменного тока.

Такие устройства имеют меньший ток утечки, благодаря большему сопротивлению диэлектрика.

Каждый из выше перечисленных типов конденсаторов имеет свои особенности проверки.

Основные неисправности конденсаторов

Выделяется несколько неисправностей, которые характерных для конденсаторов:

  1. Утечка выше положенной нормы. Происходит из-за изменения сопротивления диэлектрического материала. При такой поломке емкость снижается, и устройство не способно долгое время сохранять заряд.
  2. Обрыв. Суть повреждения состоит в электрическом разрыве проводников, которые больше не имеют электрической связи. Причиной может быть удар, сильная тряска или колебания. Нельзя исключать и брак конденсатора или нарушение правил его применения.
  3. Пробой. Возникает в случае превышения рабочего напряжения выше допустимой нормы. При такой поломке дальнейшее применение емкости невозможно из-за появления в схеме короткого замыкания.

В список неисправностей можно включить и другие — снижение емкости, высокое эквивалентное последовательное сопротивление и т. д.

В зоне наибольшего риска находятся электролитические конденсаторы из алюминия, которые часто устанавливаются в качестве фильтра для пульсирующих напряжений в разных выпрямительных устройствах.

Основные причины выхода из строя

Повышенное напряжение работы устройств, к примеру, в результате неисправности блока питания, является самой распространенной причиной выхода из строя конденсаторов.

К примеру, скачок напряжения приводит к резкому нагреву детали и, как следствие, это приводит к ее вздутию.

Изменение свойств диэлектрика в результате его растрескивания, вытекания, высыхания, приводит к изменению показаний емкости конденсатора, а это уже признак поломки детали выявить которую можно только путем использования мультиметра или других измерительных приборов.

Расшифровка обозначений на конденсаторах

Прежде чем брать конденсатор для проверки важно уметь ориентироваться в надписях на нем.

Как правило, производители прописывают на конденсаторах емкость и номинальное напряжение для работы. Если деталь слишком мелкая, на ней указываются параметры по EIA-стандарту.

При нанесении на поверхность только цифры и буквы первая показывает емкость, а вторая — тип конструкции.

Наличие трех цифр позволяет из первых двух узнать емкость, а из последней — множитель для нуля.

Дополнительно могут прописываться следующие параметры:

При обозначении нужно учесть еще ряд моментов:

  1. Наличие буквы между и после цифр может показывать наличие запятой. К примеру, 3n3 — 3300 пкФ, 33n — 33 нФ, 330n — 0,33 мкФ.
  2. Цветовая маркировка позволяет узнать емкость (первые две полоски), допустимое отклонение от номинального значения (3-я полоса) и напряжение (4-я полоска).
  3. При обозначении зарубежных устройств может применяться IEC-стандарт, по которому на устройство наносится маркировка из 3-х чисел. Первые два позволяют узнать емкость конденсатора, а третья — количество нулей.
  4. СМД конденсаторы имеют небольшие размеры, поэтому на них применяется маркировка с применением букв (емкость в пкФ) и цифр (множитель в десятой степени). Наличие двух букв спереди позволяет узнать производителя и рабочее напряжение.

Что написано на корпусе конденсаторов.Как расшифровать буквы и цифры.

Меры безопасности при проверке

Главное условие безопасности при проверке конденсаторов — необходимость полного разряда. Это правило особенно важно при проверке деталей с большой емкостью и высоким рабочим напряжением.

В случае игнорирования этого этапа можно самому попасть под остаточное напряжение или повредить измерительный прибор (как это делать читайте в следующем разделе).

Такая ситуация — частое явление при проверке конденсатора в импульсном блоке питания.

В процессе выполнения работы придерживайтесь следующих правил:

  1. Не прикасайтесь руками к выводу конденсатора / резистора.
  2. Держите отвертку, утконосы или пассатижи за ручки, имеющие хорошую изоляцию.
  3. Берегите глаза, ведь при снятии заряда может появиться сильная искра. Рекомендуется защитить все лицо.

ОПАСНОСТЬ ОТ КОНДЕНСАТОРОВ

Подготовка к проверке

Конденсаторы — неизменный элемент каждой схемы, а их повреждение чаще всего связано с завершением ресурса.

Некоторые устройства банально «высыхают», из-за чего уменьшается их емкость. Это сказывается на форме сигнала, работе цепи и других параметрах.

Чтобы выявить проблему на раннее стадии, проводится проверка элементов.

Как разрядить конденсатор перед проверкой

Разряд производится следующим образом:

  1. Для конденсаторов емкостью до 100 мкФ — замыканием контактов на выходе отверткой, утконосами или другим инструментом.
  2. При большей емкости (от 100 мкФ) и более, а также при напряжении выше 63 В нужно использовать сопротивление от 5 до 20 кОм с мощностью от 1 до 2 Вт. Для разряда достаточно подключить выводы с резистора на выход емкости на несколько секунд.

Подбор мультиметра для проверки конденсатора

Важный шаг перед проведением проверки — подготовка необходимого инструмента.

Лучшее решение — применение специального прибора для измерения емкости, а именно LC-метра или измерителя индуктивности.

Более простым вариантом является покупка универсального измерительного прибора.

На рынке можно найти большой выбор стрелочных и электронных мультиметров.

Первые считаются более понятными в интерпретации значений, а вторые — точными и удобными в применении.

При выборе необходимо смотреть на наличие нескольких пределов измерений емкости. Чаще всего прибор позволяет проводить измерения на уровне 20 и 200 нФ, 2, 20 и 200 мкФ.

Верхний предел небольшой, если учесть наличие конденсаторов на 10 000 мкФ и выше.

После выбора мультиметра его нужно подготовить:

  1. Переведите тумблер в позицию измерения или «сигнал».
  2. При использовании стрелочного прибора проверьте, чтобы стрелка находилось на 0-й отметке. Для регулировки используйте специальный регулятор в центре внизу устройства.

Пошаговая инструкция проверки конденсатора мультиметром

Наиболее распространенная проблема, связанная с конденсатором — пробой, который приводит к снижению сопротивления в диэлектрике.

Неисправность можно определить с помощью внешнего осмотра на факт вздутия, потемнения или появления черных пятен, а также более глубокой проверки с помощью прибора.

Изучение конденсатора на факт исправности возможно после выпаивания или прямо на плате. Ниже приведем разные варианты выполнения этой работы.

Внешний осмотр

Во многих ситуациях достаточно одного взгляда, чтобы определить неисправность детали. В этом случае можно ускорить проверку и избежать применения мультиметра.

Конденсатор нужно поменять в следующих случаях:

При выявления любого из указанных выше повреждений использовать деталь запрещено, и ее нужно поменять.

Проверка мультиметра полярного конденсатора

Проверке подлежат конденсаторы емкостью больше 0,25 мкФ.

Сопротивление таких емкостей небольшое, поэтому при выборе диапазона важно быть внимательным.

Во многих мультиметрах предельный диапазон равен 100 кОм, а у более мощных он может достигать 1 мОм.

Алгоритм действий, следующий:

  1. Снимите оставшийся заряд путем выкорачивания. Как это сделать правильно, рассмотрено выше.
  2. Установите подходящий предел измерений и подключите устройство к конденсатору с учетом «плюса» и «минуса» (руками к щупам касаться запрещено).
  3. Смотрите на параметр, указанный на экране. Он должен составлять более 100 кОм.

Отметим, что весь период замера параметр сопротивления будет меняться в большую сторону. Эта особенность будет заметна на экране.

Это связано с тем, что конденсатор заряжается от мультиметра, а в конечном итоге достигает отметки «1».

Если цифра «1» появится сразу, то это будет указывать на обрыв внутренней цепи.

Если показания не изменились, а прибор начал издавать звук, значит произошло короткое замыкание.

Проверка мультиметром неполярного конденсатора

На контроль неполярного конденсатора необходимо еще меньше времени.

Сделайте следующие шаги:

  1. Снимите оставшийся заряд подручным инструментом, к примеру, отверткой.
  2. Установите на мультиметре предел измерения в мегаомах.
  3. Коснитесь щупами к выводам емкости.
  4. При наличии сопротивления меньше 2 Мом конденсатор можно выбросить.

Особенность неполярных устройств в том, что в них не требуется соблюдение полярности. Для сравнения можно взять два устройства, чтобы один гарантированно был целым.

Если нужно проверить деталь с емкость до 0,5 мкФ, с помощью измерительного прибора сделать это не выйдет. В таком случае мультиметр будет показывать КЗ.

Для проверки неполярного конденсатора напряжением более 400 В работа делается после зарядки от источника, который защищен от короткого замыкания.

Последовательно с конденсатором подключается резистор, который рассчитан на сопротивление больше 100 Ом. Применение такого элемента позволяет уменьшить первичный бросок тока.

Существует также метод проверки на искру. В таком случае устройство нужно зарядить до рабочей величины, а после закоротить выводы с помощью отвертки (ручка инструмента должна быть изолирована).

По интенсивности искрения можно приблизительно узнать о силе разряда (для конденсаторов с небольшой емкостью, смотрите меры безопасности).

Сразу после заряда можно изменить напряжение. Конденсатор исправен, если он длительное время сохраняет заряд.

Разрядка устройства происходит постепенно через резистор. По причине сильного искрения разрядить его, к примеру, отверткой не получится.

Использование аналоговых измерителей

Для проверки конденсатора не обязательно иметь новый и современный мультиметр. Можно использовать обычную Ц4313, если она осталась со времен СССР или YX-1000A.

Способ измерения такой же, но сами проверки более наглядны с визуальной точки зрения.

Здесь нужно смотреть не на цифры, а на движение стрелки прибора.

Для проверки сделайте следующее:

  1. Жмите на кнопку RX.
  2. Вставьте щупы в специальные разъемы.
  3. Берите конденсатор и разрядите его.
  4. Прикоснитесь щупами к конденсатору.
  5. Если деталь исправна, стрелка будет отклоняться, а потом плавно вернется в первоначальную позицию. Скорость движения зависит от емкости проверяемого конденсатора.

Если при проверке стрелка не отклоняется или зависла в конкретной позиции, это свидетельствует о неисправности детали.

Проверка конденсатора на исправность путем снятия нужных показаний

В случае поломки конденсатора необходимо знать, как проверить деталь на обрыв, определить точную емкость, убедиться в отсутствии короткого замыкания, измерить напряжение или выполнить другие работы.

Ниже приведем пошаговые инструкции для каждого из этапов.

Измеряем емкость

Если с контролем сопротивления трудностей не возникает, при измерении параметра емкости многие новички упираются в «стену».

Чтобы убедиться в работоспособности детали, необходимо сравнить данные, указанные производителем, с реальной ситуацией.

Проверка с помощью мультиметра стандартным способом с помощью щупов не даст результата, для этого в приборе предусмотрены специальные разъемы –СХ+.

Он предусмотрен не во всех приборах, но, к примеру, в модели Mastech MY-64 он есть.

Знаки «плюс» и «минус» показывают на полярность подключения.

Для примера измерим емкость детали с обозначением 104К. Это означает, что емкость конденсатора составляет 104 000 пФ.

Сделайте следующие шаги:

  1. Установите тумблер на нужном положении –СХ+.
  2. Берите конденсатор и вставьте его ножки в этот разъем. Сторона установки не имеет значения, ведь конденсатор неполярный.
  3. Убедитесь, что полученное значение соответствует заявленным характеристикам.

При измерении емкости электролитического конденсатора на 3,3 мкФ нужно установить переключатель на отметку в 200 мкФ.

На следующем шаге вставьте деталь в разъем прибора -СХ+ с учетом «плюса» и «минуса».

Для получения данных о полярности посмотрите на деталь, где черная полоска с «нулем» обозначает «минус». После проведения измерений сравните заявленный и полученный параметр.

Если измеренная емкость отличается от номинального параметра или равна нулю, это свидетельствует о неисправности конденсатора и необходимости его замены.

Проверка на обрыв

Сама неисправность возникает при отсоединении одной или двух обкладок. По сути, деталь превращается в обычный проводник.

Причиной неисправности может быть увеличение номинального напряжения, что актуально для электролитических и помехоподавляющих конденсаторов.

Внешне определить дефект не получится, поэтому для работы применяется мультиметр.

Сделайте следующее:

  1. Разрядите конденсатор напрямую (при небольшой емкости) или с помощь дополнительного резистора на 5-10 кОм). При выполнении работы помните о безопасности.
  2. Установите мультиметр в режим сопротивления.
  3. Измерьте этот параметр на выводах.
  4. Проанализируйте полученные данные.

Если значение равно нулю, это свидетельствует об обрыве. При этом конденсатор заряжаться не будет.

Проверка на короткое замыкание

Существует три способа, позволяющих проверить конденсатор на КЗ.

Способ №1 — с помощью мультиметра:

  1. Включите прибор в режим измерения сопротивления / прозвонки.
  2. Коснитесь щупами к отпайкам конденсатора.
  3. Посмотрите на показания прибора.

Если деталь исправна, прибор показывает бесконечность, или это происходит через какой-то промежуток времени.

Появление писка свидетельствует о низком сопротивлении и КЗ в детали.

При проверке учтите следующие моменты:

В качестве альтернативы можно использовать стрелочный прибор, по которому проще наблюдать повышение сопротивления и видеть процесс зарядки.

Способ №2 — проверка при отсутствии мультиметра:

  1. Подключите светодиод / лампочку к батарейке через емкость.
  2. Обратите внимание на лампочку, которая при исправной детали не должна светиться.
  3. В случае постоянного свечения лампочки можно говорить о поломке конденсатора.

Если в процессе проверки сопротивление постоянно растет, а лампочка начинает свериться и тухнет, это свидетельствует о наличии какой-то емкости. В таком случае проверку на обрыв делать не имеет смысла.

Способ №3 — для неполярных, к примеру, пусковых конденсаторов насосов, стиральных машин или другого оборудования.

Алгоритм такой:

  1. Подключите лампочку накаливания на 25-40 Вт к конденсатору.
  2. Посмотрите, светится она или нет.

Если лампочка не горит, значит, устройство исправно.

Измерение напряжения

Для проверки конденсатора мультиметром можно измерить напряжение и сравнить полученные данные с заводским параметром.

Алгоритм действий, следующий:

  1. Найдите источник питания с напряжением, которое меньше, чем у испытуемой детали.
  2. Подключите выводы к ножкам с учетом «плюса» и «минуса».
  3. Выждите некоторое время.

Иногда после определенного промежутка времени деталь все еще работает, а ее параметры могут измениться. В таком случае нужно смотреть и фиксировать информацию.

Далее сделайте следующее:

  1. Установите на мультиметре режим измерения напряжения.
  2. Проверьте интересующий параметр.
  3. Если на экране появляется значение равное номинальному напряжению, конденсатор можно использовать и далее. В ином случае деталь лучше поменять.

Измерение увеличения токов утечки

При неисправности диэлектрика, установленного между обкладками, возможно появление токов утечки.

В обычном режиме они небольшие, но в случае их роста конденсатор больше не может удерживать заряд.

Для проверки достаточно обычного мультиметра:

  1. Зарядите конденсатор от источника питания.
  2. Сделайте несколько измерений напряжения на выводах через фиксированные промежутки времени.

Быстрое снижение напряжения свидетельствует о больших токах утечки. Во избежание погрешности в измерениях используйте мультиметр с сопротивлением на входе от 10 МОм и более.

Измерение эквивалентного сопротивления (ESR)

Бывают ситуации, когда при первом осмотре конденсатор выглядит рабочим, но на практике он оказывается неисправны.

В таких обстоятельствах имеется два пути: сразу сделать замена детали или использовать RLC-метр для более точной проверки.

Последний позволяет измерить последовательный эквивалентный параметр сопротивления. 

Увеличение этого показателя ведет к нагреву детали, а это искажает его параметры и уменьшает ресурс.

Удобство RLC-метра состоит в возможности выбирать проверяемую частоту. В качестве примера можно привести модель MASTECH 13-2039.

Такие измерения важны при контроле высокочастотных конденсаторов, установленных в импульсных блоках питания и при проверке деталей Low ESR-типа.

Анализ значения ESR проводится посредством сравнения с параметром аналогичной детали или с помощью специальной таблицы Боба Паркера.

КАК ПРОВЕРИТЬ КОНДЕНСАТОР МУЛЬТИМЕТРОМ

Проверка конденсатор без выпаивания с платы

Один из наиболее удобных способов проверки конденсатора — сделать работу без выпаивания с платы.

Алгоритм действий, следующий:

  1. Изучите состояние деталей не схеме. К признакам неисправности относится изменение цвета, вздутие, расколы и иные симптомы. В процессе эксплуатации на поверхности конденсатор могут появиться признаки температурных воздействий (потемнение платы, токопроводящие дорожки и т. д).
  2. Проверьте качество контакта, осторожно покачав ее пальцем.
  3. Измерьте напряжение в контрольных точках по цепи разряда.
  4. Убедитесь в работоспособности конденсатора.

При выявлении визуальных проблем или отклонении по напряжению подключите параллельно неисправному элементу заведомо целую деталь.

После такого эксперимента можно делать вывод об исправности.

Минус в том, что такой метод подходит для схем с небольшим напряжением.

Второй способ проверки — снятие напряжения и измерение сопротивление прямо на схеме.

Минус в том, что рассчитывать на высокую точность при такой проверке не приходится.

Сделайте следующие шаги:

  1. Установите на мультиметре тумблер в позицию измерения сопротивления.
  2. Вставьте щупы в специальные разъемы и прикоснитесь к выводам.
  3. Смотрите, как показатель сопротивления увеличивается за счет заряда от прибора. Если это так, значит, деталь исправна.

Третий метод — проверка конденсатора с помощью RLC-метра. Подключите его провода-щупы к выводам детали и посмотрите на экран.

Учтите, что при параллельном соединении параметры емкостей складываются, а при последовательном применяется особая формула (на этом вопросе мы остановимся ниже).

КАК ПРОВЕРИТЬ КОНДЕНСАТОРЫ НА ПЛАТЕ НЕ ВЫПАИВАЯ ИХ

Как измерить емкость двух последовательно подключенных конденсаторов

Бывает ситуация, когда мультиметр с опцией измерения емкости не позволяет проверить конденсатор из-за отсутствия нужного предела.

В большинстве приборов максимальный порог составляет 20 или 200 мкФ. Но что делать, если нужно измерить емкость в 1400 мкФ или более.

Здесь можно использовать следующую формулу: 1/С = 1/С1+1/С2.

Ее смысл в том, что общая емкость для двух последовательно соединенных конденсаторов будет меньше емкости наиболее маленького из них.

Иными словами, при проверке двух деталей при емкости одной из них 30 мкФ, суммарная емкость будет меньше 20 мкФ.

При наличии прибора с ограничением измерения на 20 мкФ нужно неизвестный конденсатор подключить последовательно с деталью емкостью до 20 мкФ.

Останется лишь измерить суммарную емкость двух конденсаторов и рассчитать параметры для неизвестной величины.

Что делать в случае пробоя

К наиболее распространенным неисправностям, характерным для конденсаторов, относится пробой.

Причиной является изоляция диэлектрика, отличающаяся высоким сопротивлением.  Эта особенность исключает протекание тока между проводниками.

Если конденсатор исправен, в нем возможна небольшая утечка тока сквозь изоляцию.

В случае пробоя сопротивление резко падает, и деталь превращается в простой проводник, а это ведет к замыканию в схеме.

Причиной повреждения может быть скачок напряжения, а распознать проблему можно по вздутию, потемнению или появлению черных пятен. Единственное решение в таком случае — замена.

Как проверить конденсатор при помощи прибора ESR-METR

Простыми словами, ESR-METR — устройство, предназначенное для проверки конденсаторов, созданное на базе микропроцессора (к примеру, ATmega328). Имеет дисплей и контакты для подключения проводов.

Устройство продается без корпуса и питается от батарейки типа «Крона».

Минус прибора в том, что оно позволяет и измерять ESR только для снятых конденсаторов. При проведении замера на плате прибор показывает некорректный показатель.

Для проверки конденсатора этим устройством сделайте следующие шаги:

  1. Выполните калибровку прибора. Для этого замкните контакты на 1-й и 4-й колонке, а после жмите на кнопку для автоматической калибровки. В случае успеха на экране должна появиться соответствующая надпись.
  2. Разрядите конденсатор.
  3. Подключите прибор к интересующим разъемам и выполните измерение.

В каждом конденсаторе имеется небольшое сопротивление, что приводит к небольшим потерям на уровне 0,5%. Если проверка показала завышенный показатель, это свидетельствует о высыхании детали.

Возможные сложности проверки

Главная сложность измерения параметров конденсатора — необходимость его выпаивания из схемы. Если деталь находится на плате, возникают дополнительные сложности проверки и риск искажения показаний.

Во избежание погрешностей можно использовать специальный тестер с более низким напряжением на выводах. Он позволяет проводить измерения прямо на плате и следовать рассмотренной выше инструкции.

Наличие небольшого напряжения на выводах сводит к минимуму вероятность повреждения остальных деталей.

К примеру, можно привести модель Мультиметра цифрового STAYER 45320-T.

Применяем формулы

При отсутствии под рукой прибора без гнезд для измерения конденсатора можно вспомнить курс школьной физики и использовать ряд формул.

Но это уже для тех, кто хочет полностью погрузиться в тему и на практике данный метод применяется редко.

Отметим, что при заряде рассматриваемой детали от источника постоянного напряжения через сопротивление разность потенциалов на устройстве будет подходить к напряжению источника и в завершение будет выравнено.

Т=RC

Для экономии времени можно сделать проще. К примеру, за время 3*RC в процессе зарядки разность потенциалов на детали доходит до уровня 95% по отношению к RC-цепи.

Следовательно, временной параметр легко вычислить по параметру тока и напряжения.

Иными словами, если знать число Вольт в питающем блоке и параметр сопротивления, можно вычислить постоянную времени, а после и емкость.

Допустим, в качестве проверяемого устройства имеется электролитический конденсатор.

Для проверки его емкости достаточно глянуть на надпись. К примеру, там указано напряжение 50 Вольт и емкость 6800 мкФ.

Если деталь долгое время не использовалась, параметр может не соответствовать действительности.

Для получения точной информации нужно проверить емкость.

Алгоритм действий, следующий:

  1. Берите мультиметр и резистор в 10 000 Ом. Измерьте сопротивление последнего, к примеру, прибор выдал цифру 9800 Ом.
  2. Подключите блок питания, а прибор переведите на измерение напряжения.
  3. Подключите мультиметр к БП с помощью выводов.
  4. Установите на БП напряжение 12 В и обратите внимание, чтобы на экране прибора отобразилась эта цифра.
  5. Попробуйте отрегулировать напряжение и, если это не удалось, запишите получившиеся результаты.
  6. Соберите RC-цепочку с использованием резистора и конденсатора.
  7. Закоротите конденсатор и подайте на цепочку питание.
  8. Подключите мультиметр и еще раз проверьте напряжение, которое идет на цепь. Зафиксируйте этот параметр.
  9. Вычислите 95% от расчетного числа. Так, если измерение показало 12 В, в результате получится 11,4 В. Иными словами, за время 3RC конденсатор получает разность потенциалов в 11,4 В. Итоговая формула в этом случае имеет такой вид — 3*T=3*RC.
  10. Определите время, для чего раскорачивайте деталь, запустите секундомер и ждите, когда напряжение достигнет отметки 11,4 В. Полученный параметр и будет временем, которое будет использоваться в расчетах.
  11. Параметр времени (сек) разделите на сопротивления резистора и на тройку. Получается 210 с, которые разделите снова на тройку и 9800. Получается 0,00714 или 7140 мкФ. Разрешенное отклонение не может быть больше 20%. С учетом того, что на детали указано 6800, а расчет показал 7140

    мкФ, параметр можно считать нормальным.

Сложней обстоит ситуация, когда необходимо вычислить емкость керамического конденсатора.

Для этого используйте сетевой трансформатор.

Алгоритм действий такой:

  1. Подключите RC-цепь к «вторичке» трансформатора.
  2. Подсоедините сам трансформатор к цепи.
  3. С помощью прибора измерьте напряжение на резисторе и конденсаторе.
  4. Рассчитайте ток, который идет через резистор, а после поделите напряжение на сопротивление. Результатом является Xc (емкостное сопротивление). Сама формула имеет следующий вид — Xc=1/2*?*f*С. При наличии частоты тока не возникает проблем с измерением самой емкости: С=1/2* ?*f*Xc.

Для тех, кому метод с формулами показался очень сложным, просто забудьте про него. Но некоторым может пригодится.

Рекомендации по проверке конденсатора

Многие не знают, что конденсаторы имеют особенность — они после пайки, по причине воздействия на них высоких температур, редко восстанавливаются.

С другой стороны, возникает противоречие, чтобы проверить деталь, ее нужно выпаять, так как находясь в схеме на плате конденсатор будут выкорачивать другие элементы, а сами показания будут ошибочными.

Поэтому, после впаивания уже проверенной и исправной, на первый взгляд, детали, устройство (материнская плата, электродвигатель, радиоприемник) нужно сразу включить и проверить их работу.

Если все нормально, то старый конденсатор меняют на новый, это обеспечит стабильную работу устройства в будущем.

Во избежание оплошностей учтите следующие моменты:

  1. При выявлении проблем в работе схемы посмотрите на дату выпуска конденсатора. В среднем последний усыхает на 65 процентов уже после пяти лет работы. Такой элемент, даже если он пока работает, лучше выпаять и проверить, а при необходимости поменять.
  2. Для ускорения проверки не обязательно выпаивать оба контакта — достаточно только одного. Но есть нюанс. Для большей части электролитических элементов этот способ не подходит из-за конструкции корпуса.
  3. При проверке сложной схемы с множеством проверяемых деталей повреждение лучше определить путем проверки напряжения. При отклонении этого показателя от требований или наличии подозрений на исправность, нужно выпаять и проверить деталь.
  4. В новых версиях мультиметров максимальным параметром для измерения является 200 мкФ. Если проводить проверку большей емкости, устройство может поломаться, несмотря на наличие защиты.
  5. В наиболее новых устройствах предусмотрены SMD-электроконденсаторы, которые слишком маленькие, и их трудно выпаять. В таких деталях лучше ограничиться выпаиванием только одного вывода, приподнять его и изолировать от остальной схемы, а после отпаять второй вывод.

Исходя из изученного материала, можно сделать вывод, что конденсатор можно проверить на работоспособность на плате, но лучше это делать после выпаивания.

Для измерений стоит использовать обычный мультиметр, RLC-прибор и классические формулы расчета из курса физики (в редких случаях).

Помните, что даже незначительное отклонение от нормы может свидетельствовать об ухудшении параметров детали, что может повлиять на работу всего устройства, к примеру, электродвигателя или системной платы компьютера.

Как проверить конденсатор мультиметром. На ёмкость, обрыв, короткое замыкание

«

Вам также понравится

4 мыслей о “Как проверить конденсатор мультиметром на работоспособность

  1. Hmm it appears like your website ate my first comment (it was super long) so I guess I’ll just sum it up what I submitted and say, I’m thoroughly enjoying your blog. I as well am an aspiring blog writer but I’m still new to everything. Do you have any suggestions for novice blog writers? I’d genuinely appreciate it.

  2. Admiring the hard work you put into your website and in depth information you present. It’s nice to come across a blog every once in a while that isn’t the same outdated rehashed material. Excellent read! I’ve bookmarked your site and I’m adding your RSS feeds to my Google account.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *